Unit Planning Assignment

EDCP 342A Unit planning: Rationale and overview for planning a 3 to 4 week unit of work in secondary school mathematics

Your name: Susan Chow
School, grade & course: Rockridge Secondary, Grade 10, Math 10
Topic of unit (NOTE: This should be a unit you will actually be teaching on practicum!):
Chapter 7, Linear Equations & Graphs

Preplanning questions:

(1)  Why do we teach this unit to secondary school students? Research and talk about the following: Why is this topic included in the curriculum? Why is it important that students learn it? What learning do you hope they will take with them from this? What is intrinsically interesting, useful, beautiful about this topic? (150 words)

There are lots of different reasons why linear equations and graphing linear equations is relevant in everyday life.  Linear relationships are all around us, even though students may not realize it.  For example, a functional relationship is at work when we are deciding on a phone plan or paying for a taxi.  We need functions for financial plans so we can calculate accrued interest. Functions are also found in sports statistics and metric conversion. 

Linear functions are important because they can model any real-world phenomena that involves one variable changing at a constant rate with respect to another variable. 

I hope that the students appreciate how logical and symmetrical these equations are and the intrinsic beauty in the symmetry logic.   



(2) A mathematics project connected to this unit: Plan and describe a student mathematics project that will form part of this unit. Describe the topic, aims, process and timing, and what the students will be asked to produce, and how you will assess the project. (250 words)


As part of the unit on graphing Linear Equations, I will use DESMOS to help students understand and communicate the components of the graph.  The purpose of using DESMOS is to get students involved in creation of their own graphs and to get them to think through how to construct the lines.  DESMOS enables the kids to practice their graphing skills and express their creativity in generation of the lines/graphs. It provides a visual way to understand expressions.  

I will introduce DESMOS near the end of the unit (lessons 7, 8, 9) so students will have been taught all of the basic concepts and ways to graph a linear equation.  This will hopefully just reinforce that learning.  

The activity will be assessed based on graphing of specific criteria.  The activity will require students to graph the following types of equations/lines:
1.     Line with positive slope (indicate slope)
2.     Line with negative slope (indicate slope)
3.     Line with 0 slope
4.     Line with undefined slope
5.     Draw Parallel lines & indicate slope
6.     Draw Perpendicular lines & indicate slope
7.     Graph of a function using 3 points
8.     Graph of a function using slope and y-intercept
9.     Graph of a function using Point Slope Form
10.  Graph of a function using General Form

Students will be required to graph at least 20 lines (I will give a few more criteria for some lines).  They can graph more lines or come up with other criteria for graphing.  But at a minimum they are required to provide 20 for the assessment.




(3) Assessment and evaluation: How will you build a fair and well-rounded assessment and evaluation plan for this unit? Include formative and summative, informal/ observational and more formal assessment modes. (100 words)

I’ve included 3 quizzes throughout the unit.  One following every 2-3 lessons.  I will also have students turn in their homework.  One idea I’m thinking of is to have students grade each other’s homework.  This wouldn’t be every day but every couple of days – perhaps before the quizes.  Homework will be evaluated on completeness. Students who seem to be struggling can be identified with more support offered.  There will also be a grade for the DESMOS activity, and I plan to have 1 in class activity which will also be ‘graded’ or at least evaluated for completion.  Finally, there will be a unit test at the end of the unit.

3 quizzes 30%
Unit test 20%
DESMOS  15%
In class activity 15%
Class participation 10%
Homework 10%












Elements of your unit plan:
a)  Give a numbered list of the topics of the 10-12 lessons in this unit in the order you would teach them. 
Lesson
Topic
1
Review of functions & slope of a line
2
7.1 Slope Intercept form
3
7.3 Slope Point form
4
Quiz #1 on 7.1 & 7.3.  Begin section 7.2 General Form I
5
7.2 General Form II
6
7.4 Parallel & Perpendicular lines I
7
7.4 Parallel & Perpendicular lines II
8
Quiz #2 on General form and parallel and Perpendicular lines.  Begin DESMOS
9
DESMOS day 2
10
DESMOS day 3
11
Chapter 7 review
12
Chapter 7 Unit test






b) Write a detailed lesson plan for three of the lessons which will not be in a traditional lecture/ exercise/ homework format.  These three lessons should include at least three of the following six elements related to your mathematical topic. (And of course, you could include more than three!) 

These elements should be thoroughly integrated into the lessons (i.e. not an add-on that the teacher just tells!)
a) history of this mathematics
b) social/environmental justice 
c) Indigenous perspectives and cultures
d) Arts and mathematics
e) Open-ended problem solving in groups at vertical erasable surfaces (“thinking classroom”)
f) Telling only what is arbitrary, and having students work on what is logically ‘necessary’

Be sure to include your pedagogical goals, topic of the lesson, preparation and materials, approximate timings, an account of what the students and teacher will be doing throughout the lesson, and ways that you will assess students’ background knowledge, student learning and the overall effectiveness of the lesson. Please use a template that you find helpful, and that includes all these elements.


Your unit plan is due Monday December 11, with a possible extension if needed to Friday Dec. 15.

Lesson 1 - I will use some of these ideas or more in the first lesson.  Also the first lesson is my first formal introduction to this class so it will be my chance to say hello and to get to know them a bit.  I don't know their names at all so it will be also my chance to learn who they are.

I will includes some of the points above including:
1.   Telling what is arbitrary and having students work on what is logically necessary (the first graph in lesson 1)
2.  Open ended problem solving at vertical boards - have students work through some of the problems.  And include in first lesson
3.   Arts and mathematics?
We will do a couple of exercises  during the first class of this unit to get everyone “warmed up”
1.     We’ll do an art assignment looking something like the following


2.     We'll do a problem like this to further introduce the concept of slope and linear equations:



All lessons will involve students working on the whiteboards. 

Lesson 3-5
Writing on boards

Lesson 6
Something creative and writing on the boards.
Maybe something on the white boards could be an example of using the graphs to represent something.  I could give them all a different problem and they could solve on the board?

Lesson 7
How to distinguish which equation to use

Lesson 8-10 will use DESMOS and the students have to create various kinds of graphs satisfying ten parameters: 
Using DESMOS to teach graphing

Students must show they can graph: 
1.     Slope of parallel lines
2.     Slope of perpendicular lines
3.     Draw a line using slope intercept form
4.     Draw a line using slope point form
5.     Draw a line using General form
6.     Write the equation for the line with slope -3/4 and draw the line
7.     What is the y-intercept for this line
8.     Draw the line that connects a (r,s) and b x,y)
9.     Give the equation of a straight line through two given points
10.  Draw a line through the origin and give the slope
11.  Draw a line that with undefined slope
12.  Draw a line with positive slope
13.  Draw a line with slope = 0
14.  Draw a line with negative slope
15.  And more…

Lesson 11/12 Unit test prep and Unit test

Comments

  1. Hi Sue! You're off to a good start here. There are parts of your lesson plans I'm having trouble reading in this version -- perhaps upload the document to your Google Drive and link to it on your blog? Be sure that the project really is a project, rather than another kind of test -- we will talk about that in class today! Thanks for the thoughtful start.

    ReplyDelete

Post a Comment

Popular posts from this blog

Summary observations of the term blog

'That man' - riddle

Math and Me